Connect with us

Fitness

Effects of plyometric training on health-related physical fitness in untrained participants: a systematic review and meta-analysis – Scientific Reports

Published

on

Effects of plyometric training on health-related physical fitness in untrained participants: a systematic review and meta-analysis – Scientific Reports

  • Kariyawasam, A., Ariyasinghe, A., Rajaratnam, A. & Subasinghe, P. Comparative study on skill and health related physical fitness characteristics between national basketball and football players in Sri Lanka. BMC. Res. Notes 12, 1–5. https://doi.org/10.1186/s13104-019-4434-6 (2019).

    Article 

    Google Scholar
     

  • Cirone, D., Berbrier, D. E., Gibbs, J. C. & Usselman, C. W. Health-related physical fitness in women with polycystic ovary syndrome versus controls: A systematic review and meta-analysis. Arch. Gynecol. Obstet. 309, 1–20. https://doi.org/10.1007/s00404-023-07004-w (2023).

    Article 
    CAS 

    Google Scholar
     

  • Blair, S. N., Cheng, Y. & Holder, J. S. Is physical activity or physical fitness more important in defining health benefits? Sci. Sport Exerc. 33, S379–S399. https://doi.org/10.1097/00005768-200106001-00007 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Tomkinson, G. R. et al. European normative values for physical fitness in children and adolescents aged 9–17 years: Results from 2 779 165 Eurofit performances representing 30 countries. Br. J. Sports Med. 52, 1445–1456. https://doi.org/10.1136/bjsports-2017-098253 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • American College of Sports Medicine. Acsm’s Health-Related Physical Fitness Assessment Manual 5th edn. (Lippincott Williams & Wilkins, 2013).


    Google Scholar
     

  • Al-Mallah, M. H., Sakr, S. & Al-Qunaibet, A. Cardiorespiratory fitness and cardiovascular disease prevention: An update. Curr. Atheroscler. Rep. 20, 1–9. https://doi.org/10.1007/s11883-018-0711-4 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ezzatvar, Y. et al. Cardiorespiratory fitness measured with cardiopulmonary exercise testing and mortality in patients with cardiovascular disease: A systematic review and meta-analysis. J. Sport Health Sci. 10, 609–619. https://doi.org/10.1016/j.jshs.2021.06.004 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kandola, A., Ashdown-Franks, G., Stubbs, B., Osborn, D. P. J. & Hayes, J. F. The association between cardiorespiratory fitness and the incidence of common mental health disorders: A systematic review and meta-analysis. J. Affect. Disord. 257, 748–757. https://doi.org/10.1016/j.jad.2019.07.088 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez-Campillo, R. et al. The effects of plyometric jump training on physical fitness attributes in basketball players: A meta-analysis. J. Sport Health Sci. 11, 656–670. https://doi.org/10.1016/j.jshs.2020.12.005 (2021).

    Article 

    Google Scholar
     

  • Mazurek, K. et al. Effects of short-term plyometric training on physical performance in male handball players. J. Hum. Kinet. 63, 137–148. https://doi.org/10.2478/hukin-2018-0014 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moran, J. et al. Effects of vertically and horizontally orientated plyometric training on physical performance: A meta-analytical comparison. Sports Med. 51, 65–79. https://doi.org/10.1007/s40279-020-01340-6 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Deng, N. et al. Effects of plyometric training on skill and physical performance in healthy tennis players: A systematic review and meta-analysis. Front. Physiol. 13, 3158–3169. https://doi.org/10.3389/fphys.2022.1024418 (2022).

    Article 

    Google Scholar
     

  • Kons, R. L. et al. Effects of plyometric training on physical performance: An umbrella review. Sports Med.-Open 9, 4. https://doi.org/10.1186/s40798-022-00550-8 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sole, C. J., Bellon, C. R. & Beckham, G. K. Plyometric training. In Advanced Strength and Conditioning: An Evidence-Based Approach (eds Turner, A. & Comfort, P.) 307–327 (Routledge, 2022).

    Chapter 

    Google Scholar
     

  • Morio, C. et al. Time course of neuro-mechanical changes underlying stretch–shortening cycle during intermittent exhaustive rebound exercise. Eur. J. Appl. Physiol. 111, 2295–2305. https://doi.org/10.1007/s00421-011-1859-6 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Davies, G., Riemann, B. L. & Manske, R. Current concepts of plyometric exercise. Int. J. Sports Phys. Ther. 10, 760–786 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Markovic, G. & Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 40, 859–895. https://doi.org/10.2165/11318370-000000000-00000 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Slimani, M., Chamari, K., Miarka, B., Del Vecchio, F. B. & Chéour, F. Effects of plyometric training on physical fitness in team sport athletes: A systematic review. J. Hum. Kinet. 53, 231. https://doi.org/10.1515/hukin-2016-0026 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ramirez-Campillo, R. et al. Effects of plyometric jump training on measures of physical fitness and sport-specific performance of water sports athletes: A systematic review with meta-analysis. Sports Med.-Open 8(1), 108. https://doi.org/10.1186/s40798-022-00502-2 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deng, N., Soh, K. G., Abdullah, B. & Huang, D. Effects of plyometric training on measures of physical fitness in racket sport athletes: A systematic review and meta-analysis. PeerJ 11, e16638. https://doi.org/10.7717/peerj.16638 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ojeda-Aravena, A. et al. A systematic review with meta-analysis on the effects of plyometric-jump training on the physical fitness of combat sport athletes. Sports 11(2), 33. https://doi.org/10.3390/sports11020033 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Oxfeldt, M., Overgaard, K., Hvid, L. G. & Dalgas, U. Effects of plyometric training on jumping, sprint performance, and lower body muscle strength in healthy adults: A systematic review and meta-analyses. Scand. J. Med. Sci. Sports 29(10), 1453–1465. https://doi.org/10.1111/sms.13487 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Moran, J., Clark, C. C., Ramirez-Campillo, R., Davies, M. J. & Drury, B. A meta-analysis of plyometric training in female youth: Its efficacy and shortcomings in the literature. J. Strength Cond. Res. 33(7), 1996–2008. https://doi.org/10.1519/JSC.0000000000002768 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Vetrovsky, T., Steffl, M., Stastny, P. & Tufano, J. J. The efficacy and safety of lower-limb plyometric training in older adults: A systematic review. Sports Med. 49, 113–131. https://doi.org/10.1007/s40279-018-1018-x (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Garcia-Carrillo, E. et al. Effects of upper-body plyometric training on physical fitness in healthy youth and young adult participants: A systematic review with meta-analysis. Sports Med.-Open 9(1), 93. https://doi.org/10.1186/s40798-023-00631-2 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Villarreal, E. S., Requena, B. & Newton, R. U. Does plyometric training improve strength performance? A meta-analysis. J. Sci. Med. Sport 13(5), 513–522. https://doi.org/10.1016/j.jsams.2009.08.005 (2010).

    Article 

    Google Scholar
     

  • Ramirez-Campillo, R. et al. Body composition adaptations to lower-body plyometric training: A systematic review and meta-analysis. Biol. Sport 39, 273–287. https://doi.org/10.5114/BIOLSPORT.2022.104916 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Bompa, O. T. & Buzzichelli, C. Periodization of Strength Training for Sports 4th edn. (Human Kinetics, 2013).


    Google Scholar
     

  • Goodwin, J. E. & Jeffreys, I. Plyometric training: Theory and practice. In Strength and Conditioning for Sports Performance (eds Goodwin, J. E. & Jeffreys, I.) 346–382 (Routledge, 2016).


    Google Scholar
     

  • Potach, D. H. & Chu, D. A. Program design and technique for plyometric training. In Essentials of Strength Training and Conditioning 4th edn (eds Haff, G. G. & Triplett, N. T.) 471–520 (Human Kinetics, 2015).


    Google Scholar
     

  • Cakar, E. et al. Jumping combined exercise programs reduce fall risk and improve balance and life quality of elderly people who live in a long-term care facility. Eur. J. Phys. Rehabil. Med. 46, 59–67 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • Johnson, B. A., Salzberg, C. L. & Stevenson, D. A. A systematic review: Plyometric training programs for young children. J. Strength Cond. Res. 25, 2623–2633. https://doi.org/10.1519/JSC.0b013e318204caa0 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Sortwell, A., Newton, M., Marinho, D. A., Ferraz, R. & Perlman, D. The effects of an eight week plyometric-based program on motor performance skills and muscular power in 7–8-year-old primary school students. Int. J. Kinesiol. Sports Sci. 9, 1–12. https://doi.org/10.7575/aiac.ijkss.v.9n.4p.1 (2021).

    Article 

    Google Scholar
     

  • Racil, G. et al. Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Appl. Physiol. Nutr. Metab. 41, 103–109. https://doi.org/10.1139/apnm-2015-0384 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Marzouki, H. et al. Effects of surface-type plyometric training on physical fitness in schoolchildren of both sexes: A randomized controlled intervention. Biology 11, 1035. https://doi.org/10.3390/biology11071035 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Almeida, M. B. D. et al. Plyometric training increases gross motor coordination and associated components of physical fitness in children. Eur. J. Sport Sci. 21, 1263–1272. https://doi.org/10.1080/17461391.2020.1838620 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Nobre, G. G. et al. Twelve weeks of plyometric training improves motor performance of 7- to 9-year-old boys who were overweight/obese: A randomized controlled intervention. J. Strength Cond. Res. 31, 2091–2099. https://doi.org/10.1519/JSC.0000000000001684 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Ingle, L., Sleap, M. & Tolfrey, K. The effect of a complex training and detraining programme on selected strength and power variables in early pubertal boys. J. Sports Sci. 24, 987–997. https://doi.org/10.1080/02640410500457117 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Marín-Cascales, E., Rubio-Arias, J. A., Romero-Arenas, S. & Alcaraz, P. E. Effect of 12 weeks of whole-body vibration versus multi-component training in post-menopausal women. Rejuvenat. Res. 18, 508–516. https://doi.org/10.1089/rej.2015.1681 (2015).

    Article 

    Google Scholar
     

  • Ozen, S. V. Reproductive hormones and cortisol responses to plyometric training in males. Biol. Sport 29, 193–197. https://doi.org/10.5604/20831862.1003442 (2012).

    Article 

    Google Scholar
     

  • Gopalakrishnan, S. & Ganeshkumar, P. Systematic reviews and meta-analysis: Understanding the best evidence in primary healthcare. J. Fam. Med. Prim. Care 2(1), 9–14. https://doi.org/10.4103/2249-4863.109934 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Page, M. J. et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 88, 105906. https://doi.org/10.1016/j.ijsu.2021.105906 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Amir-Behghadami, M. & Janati, A. Population, intervention, comparison, outcomes and study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg. Med. J. 1, 1. https://doi.org/10.1136/emermed-2020-209567 (2020).

    Article 

    Google Scholar
     

  • Ramirez-Campillo, R. et al. Methodological characteristics and future directions for plyometric jump training research: A scoping review. Sports Med. 48, 1059–1081. https://doi.org/10.1007/s40279-018-0870-z (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Flemyng, E. et al. Using risk of bias 2 to assess results from randomised controlled trials: Guidance from Cochrane. BMJ Evid.-Based Med. 28, 260–266. https://doi.org/10.1136/bmjebm-2022-112102 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Sterne, J. A. et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 355, i4919. https://doi.org/10.1136/bmj.i4919 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schünemann, H. J. et al. GRADE guidelines: 21 part 1. Study design, risk of bias, and indirectness in rating the certainty across a body of evidence for test accuracy. J. Clin. Epidemiol. 122, 129–141. https://doi.org/10.1016/j.jclinepi.2019.12.020 (2022).

    Article 

    Google Scholar
     

  • Ramirez-Campillo, R. et al. Effects of plyometric jump training on the reactive strength index in healthy individuals across the lifespan: A systematic review with meta-analysis. Sports Med. 53, 1029–1053. https://doi.org/10.1007/s40279-023-01825-0 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deeks, J. J., Higgins, J. P. & Altman, D. G. Analysing data and undertaking meta-analyses. In Cochrane Handbook for Systematic Reviews of Interventions (eds Higgins, J. P. & Green, S.) 243–296 (The Cochrane Collaboration, 2008).

    Chapter 

    Google Scholar
     

  • Kontopantelis, E., Springate, D. A. & Reeves, D. A re-analysis of the Cochrane Library data: The dangers of unobserved heterogeneity in meta-analyses. PLoS ONE 8, e69930. https://doi.org/10.1371/journal.pone.0069930 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hopkins, W. G., Marshall, S. W., Batterham, A. M. & Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 41, 3–13. https://doi.org/10.1249/MSS.0b013e31818cb278 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Higgins, J. P., Deeks, J. J. & Altman, D. G. Special topics in statistics. In Cochrane Handbook for Systematic Reviews of Interventions (eds Higgins, J. P. & Green, S.) 481–529 (The Cochrane Collaboration, 2008).

    Chapter 

    Google Scholar
     

  • Drevon, D., Fursa, S. R. & Malcolm, A. L. Intercoder reliability and validity of WebPlotDigitizer in extracting graphed data. Behav. Modif. 41, 323–339. https://doi.org/10.1177/0145445516673998 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558. https://doi.org/10.1002/sim.1186 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Egger, M., Davey Smith, G., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634. https://doi.org/10.1136/bmj.315.7109.629 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faigenbaum, A. D. et al. Effects of a short-term plyometric and resistance training program on fitness performance in boys age 12 to 15 years. J. Sports Sci. Med. 6, 519–525 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faigenbaum, A. D. et al. “Plyo play”: A novel program of short bouts of moderate and high. Phys. Educ. Winter 66(1), 37 (2009).


    Google Scholar
     

  • Tsang, K. & DiPasquale, A. Improving the Q: H strength ratio in women using plyometric exercises. J. Strength Cond. Res. 25, 2740–2745. https://doi.org/10.1519/JSC.0b013e31820d9e95 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Park, J., Cho, K. & Lee, W. Effect of jumping exercise on muscle strength and balance of elderly people: A randomized controlled trial. J. Phys. Ther. Sci. 24, 1345–1348. https://doi.org/10.1589/jpts.24.1345 (2012).

    Article 

    Google Scholar
     

  • Chaouachi, A., Othman, A. B., Hammami, R., Drinkwater, E. J. & Behm, D. G. The combination of plyometric and balance training improves sprint and shuttle run performances more often than plyometric-only training with children. J. Strength Cond. Res. 28, 401–412. https://doi.org/10.1519/JSC.0b013e3182987059 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Marín-Cascales, E., Alcaraz, P. E. & Rubio-Arias, J. A. Effects of 24 weeks of whole body vibration versus multicomponent training on muscle strength and body composition in postmenopausal women: A randomized controlled trial. Rejuvenat. Res. 20, 193–201. https://doi.org/10.1089/rej.2016.1877 (2017).

    Article 

    Google Scholar
     

  • Qi, F. et al. Effects of combined training on physical fitness and anthropometric measures among boys aged 8 to 12 years in the physical education setting. Sustainability 11(5), 51219. https://doi.org/10.3390/su11051219 (2019).

    Article 

    Google Scholar
     

  • van Roie, E. et al. An age-adapted plyometric exercise program improves dynamic strength, jump performance and functional capacity in older men either similarly or more than traditional resistance training. PLoS ONE 15, 1–22. https://doi.org/10.1371/journal.pone.0237921 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Radwan, N. L., Mahmoud, W. S., Mohamed, R. A. & Ibrahim, M. M. Effect of adding plyometric training to physical education sessions on specific biomechanical parameters in primary school girls. J. Musculoskel. Neuronal Interact. 21, 237–246 (2021).


    Google Scholar
     

  • Singh, G. et al. Effects of sand-based plyometric-jump training in combination with endurance running on outdoor or treadmill surface on physical fitness in young adult males. J. Sports Sci. Med. 21(2), 277–286. https://doi.org/10.52082/jssm.2022.277 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bulqini, A., Widodo, A., Muhammad, H. N., Putera, S. H. P. & Sholikhah, A. M. A. Plyometric hurdle jump training using beach sand media increases power and muscle strength in young adult males. Phys. Educ. Theory Methodol. 23, 531–536. https://doi.org/10.17309/tmfv.2023.4.06 (2023).

    Article 

    Google Scholar
     

  • Witzke, K. A. & Snow, C. M. Effects of plyometric jump training on bone mass in adolescent girls. Med. Sci. Sports Exerc. 32, 1051–1057. https://doi.org/10.1097/00005768-200006000-00003 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Villada, J. F. R., León Ariza, H. H., Jiménez, A. S. & Sepúlveda, C. M. Alterations in body composition, capillary glucose and functionality during explosive strength training in older women. Int. J. Disabil. Hum. Dev. 15, 251–259. https://doi.org/10.1515/ijdhd-2015-0011 (2016).

    Article 

    Google Scholar
     

  • Thaqi, A., Berisha, M. & Hoxha, S. The effect of plyometric training on the power-related factors of children aged 16 years-old. Prog. Nutr. 22, e2020004. https://doi.org/10.2751/pn.v22i2-S.10441 (2020).

    Article 

    Google Scholar
     

  • Willoughby, D., Hewlings, S. & Kalman, D. Body composition changes in weight loss: Strategies and supplementation for maintaining lean body mass, a brief review. Nutrients 10, 1876. https://doi.org/10.3390/nu10121876 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shim, A., Cross, P., Norman, S. & Hauer, P. Assessing various body composition measurements as an appropriate tool for estimating body fat in National Collegiate Athletic Association Division I female collegiate athletes. Am. J. Sports Sci. Med. 2(1), 1–5. https://doi.org/10.12691/ajssm-2-1-1 (2014).

    Article 

    Google Scholar
     

  • Merrigan, J. et al. Reliability and validity of contemporary bioelectrical impedance analysis devices for body composition assessment. J. Exerc. Nutr. 5(4), 103133. https://doi.org/10.53520/jen2022.103133 (2022).

    Article 

    Google Scholar
     

  • Fonseca, D. C. et al. Body weight control and energy expenditure. Clin. Nutr. Exp. 20, 55–59. https://doi.org/10.1016/j.yclnex.2018.04.001 (2018).

    Article 

    Google Scholar
     

  • Barillas, S. R. et al. Repeated plyometric exercise attenuates blood glucose in healthy adults. Int. J. Exerc. Sci. 10(7), 1076 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monti, E. et al. The time-course of changes in muscle mass, architecture and power during 6 weeks of plyometric training. Front. Physiol. 11, 567299. https://doi.org/10.3389/fphys.2020.00946 (2020).

    Article 

    Google Scholar
     

  • Campo, S. S. et al. Effects of lower-limb plyometric training on body composition, explosive strength, and kicking speed in female soccer players. J. Strength Cond. Res. 23, 1714–1722. https://doi.org/10.1519/JSC.0b013e3181b3f537 (2009).

    Article 

    Google Scholar
     

  • Aloui, G. et al. Effects of elastic band plyometric training on physical performance of team handball players. Appl. Sci. 11, 1309. https://doi.org/10.3390/app11031309 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Oliveira, A., Monteiro, A., Jacome, C., Afreixo, V. & Marques, A. Effects of group sports on health-related physical fitness of overweight youth: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 27, 604–611. https://doi.org/10.1111/sms.12784 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Miller, T., Mull, S., Aragon, A. A., Krieger, J. & Schoenfeld, B. J. Resistance training combined with diet decreases body fat while preserving lean mass independent of resting metabolic rate: A randomized trial. Int. J. Sport Nutr. Exerc. Metab. 28(1), 46–54. https://doi.org/10.1123/ijsnem.2017-0221 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benito, P. J. et al. Strength plus endurance training and individualized diet reduce fat mass in overweight subjects: A randomized clinical trial. Int. J. Environ. Res. Public Health 17(7), 2596. https://doi.org/10.3390/ijerph17072596 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kotarsky, C. J. et al. Time-restricted eating and concurrent exercise training reduces fat mass and increases lean mass in overweight and obese adults. Physiol. Rep. 9(10), e14868. https://doi.org/10.14814/phy2.14868 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willis, L. H. et al. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J. Appl. Physiol. 113(12), 1831–1837. https://doi.org/10.1152/japplphysiol.01370.2011 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Collins, H., Fawkner, S., Booth, J. N. & Duncan, A. The effect of resistance training interventions on weight status in youth: A meta-analysis. Sports Med. Open 4, 41. https://doi.org/10.1186/s40798-018-0154-z (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carroll, T. J., Riek, S. & Carson, R. G. Neural adaptations to resistance training: Implications for movement control. Sports Med. 31, 829–840. https://doi.org/10.2165/00007256-200131120-00001 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grgic, J. et al. Effect of resistance training frequency on gains in muscular strength: A systematic review and meta-analysis. Sports Med. 48, 1207–1220. https://doi.org/10.1007/s40279-018-0872-x (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Turner, A. N. & Jeffreys, I. The stretch-shortening cycle: Proposed mechanisms and methods for enhancement. Strength Cond. J. 32, 87–99. https://doi.org/10.1519/SSC.0b013e3181e928f9 (2010).

    Article 

    Google Scholar
     

  • Grgic, J., Schoenfeld, B. J. & Mikulic, P. Effects of plyometric vs resistance training on skeletal muscle hypertrophy: A review. J. Sport Health Sci. 10, 530–536. https://doi.org/10.1016/j.jshs.2020.06.010 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • De Ste Croix, M. B., Deighan, M. A. & Armstrong, N. Assessment and interpretation of isokinetic muscular strength during growth and maturation. Sports Med. 33, 727–743. https://doi.org/10.2165/00007256-200333100-00002 (2003).

    Article 
    PubMed 

    Google Scholar
     

  • Radnor, J. M., Oliver, J. L., Waugh, C. M., Myer, G. D. & Lloyd, R. S. The influence of maturity status on muscle architecture in school-aged boys. Pediatr. Exerc. Sci. 32, 89–96. https://doi.org/10.1123/pes.2019-0201 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peterson, M. D., Rhea, M. R., Sen, A. & Gordon, P. M. Resistance exercise for muscular strength in older adults: A meta-analysis. Ageing Res. Rev. 9(3), 226–237 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Myers, J., Kokkinos, P. & Nyelin, E. Physical activity, cardiorespiratory fitness, and the metabolic syndrome. Nutrients 11, 1652. https://doi.org/10.3390/nu11071652 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lindgren, M. & Börjesson, M. The importance of physical activity and cardiorespiratory fitness for patients with heart failure. Diabetes Res. Clin. Pract. 176, 108833. https://doi.org/10.1016/j.diabres.2021.108833 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Azmi, N. A., Zaki, N. T. A., Kong, M. C., Ab Rahman, N. N. A. & Zanudin, A. Correlation of physical activity level with physical fitness and respiratory function amongst undergraduates. Trends Sci. 18, 24. https://doi.org/10.48048/tis.2021.24 (2021).

    Article 

    Google Scholar
     

  • Lum, D., Barbosa, T. M., Aziz, A. R. & Balasekaran, G. Effects of isometric strength and plyometric training on running performance: A randomized controlled study. Res. Q. Exerc. Sport 94, 263–271. https://doi.org/10.1080/02701367.2021.1969330 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Ross, R. et al. Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign: A scientific statement from the American Heart Association. Circulation 134, e653–e699. https://doi.org/10.1161/CIR.0000000000000461 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Green, S. & Askew, C. VO2peak is an acceptable estimate of cardiorespiratory fitness but not VO2max. J. Appl. Physiol. 125(1), 229–232. https://doi.org/10.1152/japplphysiol.00850.2017 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Buga, S. & Gencer, Y. G. The effect of plyometric training performed on different surfaces on some performance parameters. Prog. Nutr. 24, e2022072. https://doi.org/10.23751/pn.v24iS1.13014 (2022).

    Article 

    Google Scholar
     

  • Ramirez-Campillo, R. et al. Effect of unilateral, bilateral, and combined plyometric training on explosive and endurance performance of young soccer players. J. Strength Cond. Res. 29, 1317–1328. https://doi.org/10.1519/JSC.0000000000000762 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Berryman, N., Maurel, D. & Bosquet, L. Effect of plyometric vs dynamic weight training on the energy cost of running. J. Strength Cond. Res. 24(7), 1818–1825. https://doi.org/10.1519/JSC.0b013e3181def1f5 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Gibala, M. J., Gillen, J. B. & Percival, M. E. Physiological and health-related adaptations to low-volume interval training: Influences of nutrition and sex. Sports Med. 44, 127–137. https://doi.org/10.1007/s40279-014-0259-6 (2014).

    Article 
    PubMed Central 

    Google Scholar
     

  • Gidlund, E. K. Exercise and the mitochondria. In Cardiorespiratory Fitness in Cardiometabolic Diseases (eds Kokkinos, P. & Narayan, P.) (Springer, 2019).


    Google Scholar
     

  • Lin, X. et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 4(7), e002014. https://doi.org/10.1161/JAHA.115.002014 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thompson, D. L. Fitness focus copy-and-share: Flexibility. ACSMs Health Fit J. 12, 5. https://doi.org/10.1249/FIT.0b013e318184516b (2008).

    Article 

    Google Scholar
     

  • Ayala, F., de Baranda, P. S., Croix, M. D. S. & Santonja, F. Criterion-related validity of four clinical tests used to measure hamstring flexibility in professional futsal players. Phys. Ther. Sport 12(4), 175–181. https://doi.org/10.1016/j.ptsp.2011.02.005 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramírez-delaCruz, M., Bravo-Sánchez, A., Esteban-García, P., Jiménez, F. & Abián-Vicén, J. Effects of plyometric training on lower body muscle architecture, tendon structure, stiffness and physical performance: A systematic review and meta-analysis. Sports Med.-Open 8, 40. https://doi.org/10.1186/s40798-022-00431-0 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Villarreal, E. S., Molina, J. G., de Castro-Maqueda, G. & Gutiérrez-Manzanedo, J. V. Effects of plyometric, strength and change of direction training on high-school basketball player’s physical fitness. J. Hum. Kinet. 78, 175–186. https://doi.org/10.2478/hukin-2021-0036 (2021).

    Article 

    Google Scholar
     

  • da Silva, N. V. F. et al. Effects of short-term plyometric training on physical fitness parameters in female futsal athletes. J. Phys. Ther. Sci. 29, 783–788. https://doi.org/10.1589/jpts.29.783 (2017).

    Article 

    Google Scholar
     

  • Deng, N. et al. Effects of combined upper and lower limb plyometric training interventions on physical fitness in athletes: A systematic review with meta-analysis. Int. J. Environ. Res. Public Health 20, 482. https://doi.org/10.3390/ijerph20010482 (2023).

    Article 

    Google Scholar
     

  • Kell, R. T., Bell, G. & Quinney, A. Musculoskeletal fitness, health outcomes and quality of life. Sports Med. 31, 863–873. https://doi.org/10.2165/00007256-200131120-00003 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ambegaonkar, J. P., Caswell, S. V., Winchester, J. B., Caswell, A. A. & Andre, M. J. Upper-body muscular endurance in female university-level modern dancers: A pilot study. J. Dance Med. Sci. 16, 3–7. https://doi.org/10.1177/1089313X1201600101 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Bianco, A. et al. The sit up test to exhaustion as a test for muscular endurance evaluation. Springerplus 4, 309. https://doi.org/10.1186/s40064-015-1023-6 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ford, P. et al. Participant development in sport and physical activity: The impact of biological maturation. Eur. J. Sport Sci. 12, 515–526. https://doi.org/10.1080/17461391.2011.577241 (2012).

    Article 

    Google Scholar
     

  • Ramirez-Campillo, R. et al. Effects of plyometric jump training on vertical jump height of volleyball players: A systematic review with meta-analysis of randomized-controlled trial. J. Sports Sci. Med. 19, 489–499. https://doi.org/10.25932/publishup-52589 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Continue Reading